231 research outputs found

    Characterization of polyaniline-detonation nanodiamond nanocomposite fibers by atomic force microscopy based technique

    Get PDF
    Polyaniline (PANI) fibers were synthesized in presence of detonantion nanodiamond (DND) particles by precipitation polymerization technique. Morphological, electrical and mechanical characterizations of the obtained PANI/DND nanocomposited have been performed by different either standard or advanced atomic force microscopy (AFM) based techniques. Morphological characterization by tapping mode AFM supplied information about the structure of fibers and ribbons forming the PANI/DND network. An AFM based technique that takes advantage of an experimental configuration specifically devised for the purpose was used to assess the electrical properties of the fibers, in particular to verify their conductivity. Finally, mechanical characterization was carried out synergically using two different and recently proposed AFM based techniques, one based on AFM tapping mode and the other requiring AFM contact mode, which probed the nanocomposited nature of PANI/DND fiber sample down to different depths. © 2013 Elsevier Ltd. All rights reserved

    Scanning probe microscopy techniques for mechanical characterization at nanoscale

    Get PDF
    Three atomic force microscopy (AFM)-based techniques are reviewed that allow one to conduct accurate measurements of mechanical properties of either stiff or compliant materials at a nanometer scale. Atomic force acoustic microscopy, AFM-based depth sensing indentation, and torsional harmonic AFM are briefly described. Examples and results of quantitative characterization of stiff (an ultrathin SeSn film), soft polymeric (polyaniline fibers doped with detonation nanodiamond) and biological (collagen fibers) materials are reported

    Verifying big data topologies by-design: a semi-automated approach

    Get PDF
    Big data architectures have been gaining momentum in recent years. For instance, Twitter uses stream processing frameworks like Apache Storm to analyse billions of tweets per minute and learn the trending topics. However, architectures that process big data involve many different components interconnected via semantically different connectors. Such complex architectures make possible refactoring of the applications a difficult task for software architects, as applications might be very different with respect to the initial designs. As an aid to designers and developers, we developed OSTIA (Ordinary Static Topology Inference Analysis) that allows detecting the occurrence of common anti-patterns across big data architectures and exploiting software verification techniques on the elicited architectural models. This paper illustrates OSTIA and evaluates its uses and benefits on three industrial-scale case-studies

    Scaling relations of cluster elliptical galaxies at z~1.3. Distinguishing luminosity and structural evolution

    Full text link
    [Abridged] We studied the size-surface brightness and the size-mass relations of a sample of 16 cluster elliptical galaxies in the mass range 10^{10}-2x10^{11} M_sun which were morphologically selected in the cluster RDCS J0848+4453 at z=1.27. Our aim is to assess whether they have completed their mass growth at their redshift or significant mass and/or size growth can or must take place until z=0 in order to understand whether elliptical galaxies of clusters follow the observed size evolution of passive galaxies. To compare our data with the local universe we considered the Kormendy relation derived from the early-type galaxies of a local Coma Cluster reference sample and the WINGS survey sample. The comparison with the local Kormendy relation shows that the luminosity evolution due to the aging of the stellar content already assembled at z=1.27 brings them on the local relation. Moreover, this stellar content places them on the size-mass relation of the local cluster ellipticals. These results imply that for a given mass, the stellar mass at z~1.3 is distributed within these ellipticals according to the same stellar mass profile of local ellipticals. We find that a pure size evolution, even mild, is ruled out for our galaxies since it would lead them away from both the Kormendy and the size-mass relation. If an evolution of the effective radius takes place, this must be compensated by an increase in the luminosity, hence of the stellar mass of the galaxies, to keep them on the local relations. We show that to follow the Kormendy relation, the stellar mass must increase as the effective radius. However, this mass growth is not sufficient to keep the galaxies on the size-mass relation for the same variation in effective radius. Thus, if we want to preserve the Kormendy relation, we fail to satisfy the size-mass relation and vice versa.Comment: Accepted for publication in A&A, updated to match final journal versio

    A UML Profile for the Design, Quality Assessment and Deployment of Data-intensive Applications

    Get PDF
    Big Data or Data-Intensive applications (DIAs) seek to mine, manipulate, extract or otherwise exploit the potential intelligence hidden behind Big Data. However, several practitioner surveys remark that DIAs potential is still untapped because of very difficult and costly design, quality assessment and continuous refinement. To address the above shortcoming, we propose the use of a UML domain-specific modeling language or profile specifically tailored to support the design, assessment and continuous deployment of DIAs. This article illustrates our DIA-specific profile and outlines its usage in the context of DIA performance engineering and deployment. For DIA performance engineering, we rely on the Apache Hadoop technology, while for DIA deployment, we leverage the TOSCA language. We conclude that the proposed profile offers a powerful language for data-intensive software and systems modeling, quality evaluation and automated deployment of DIAs on private or public clouds

    Atomic force microscopy techniques for nanomechanical characterization : a polymer case study

    Get PDF
    Atomic force microscopy (AFM) is a versatile tool to perform mechanical characterization of surface samples at the nanoscale. In this work, we review two of such methods, namely contact resonance AFM (CR-AFM) and torsional harmonics AFM (TH-AFM). First, such techniques are illustrated and their applicability on materials with elastic moduli in different ranges are discussed, together with their main advantages and limitations. Then, a case study is presented in which we report the mechanical characterization using both CR-AFM and TH-AFM of polyaniline and polyaniniline doped with nanodiamond particles tablets prepared by a pressing process. We determined the indentation modulus values of their surfaces, which were found in fairly good agreement, thus demonstrating the accuracy of the techniques. Finally, the determined surface elastic moduli have been compared with the bulk ones measured through standard indentation testing. INTRODUCTION In the field of nanotechnology, the development of innovative and nondestructive characterization techniques plays a crucial role. Indeed, the characterization of nanostructured hybrid materials (e.g., thin films and nanocomposites) and devices requires the capability of acquiring maps of the local mechanical properties at the nanoscale. Nanoindentation is the most common method for determining the mechanical properties of thin films. However, its applicability is strictly limited by the thickness of the sample. Furthermore, its poor spatial resolution does not allow the reconstruction of an accurate distribution of the sample surface mechanical properties. For this reason, alternative methods, based on atomic force microscopy (AFM), have been developed. By exploiting the high resolution of the AFM, maps of the surface mechanical properties (i.e., indentation modulus) can be achieved. Among these techniques, AFM nanoindentation1 is the simplest method used to evaluate the local mechanical properties o

    A Sustainable Hydroxypropyl Cellulose-Nanodiamond Composite for Flexible Electronic Applications

    Get PDF
    Designing fully green materials for flexible electronics is an urgent need due to the growing awareness of an environmental crisis. With the aim of developing a sustainable, printable, and biocompatible material to be exploited in flexible electronics, the rheological, structural and charge transport properties of water-based hydroxypropyl cellulose (HPC)-detonation nanodiamond (DND) viscous dispersions are investigated. A rheological investigation disclosed that the presence of the DND affects the orientation and entanglement of cellulose chains in the aqueous medium. In line with rheological analyses, the NMR diffusion experiments pointed out that the presence of DND modifies the hydrodynamic behavior of the cellulose molecules. Despite the increased rigidity of the system, the presence of DND slightly enhances the ionic conductivity of the dispersion, suggesting a modification in the charge transport properties of the material. The electrochemical analyses, performed through Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS), revealed that the HPC-DND system is remarkably stable in the explored voltage range (−0.1 to +0.4 V) and characterized by a lowered bulk resistance with respect to HPC. Such features, coupled with the printability and filmability of the material, represent good requirements for the exploitation of such systems in flexible electronic applications

    Detonation nanodiamonds tailor the structural oeder of PEDOT chains in conductive coating layers of hybrid nanoparticles

    Get PDF
    Solid layers of PEDOT–detonation nanodiamond based nanoparticles with an exceptional structural order were produced by means of a template-free polymerization technique. As an efficient multifunctional filler, the nanocrystalline diamond has been shown to possess a high catalytic activity on the monomer polymerization rate as well as to play a fundamental role as a 3D arrangement-directing agent of the PEDOT chains at the micro- and nano-scale. SEM, TEM and TED analyses highlighted the mutual organization between PEDOT oligomers and nanodiamond grains, and the produced hierarchical effects on the arrangement of the backbones of the final polymer. Optical and Raman spectroscopy, used together with XRD diffraction to study the molecular structure and crystallographic features of the hybrid materials, pointed out that the adopted synthetic strategy enables highly conjugated and doped hybrid systems to be generated. The spatial distribution of the filler inside the polymeric matrix and the mutual connectivity of nanodiamond crystals and PEDOT segments are found to strongly improve the functional properties of the host polymer. Mechanical characterizations by advanced AFM-based techniques revealed that both indentation modulus and hardness of PEDOT/nanodiamond materials are 3 times higher than the pure PEDOT polymer, while electrical characterizations by a 4-probe method gave sheet resistance values of 1 106 U sq 1 for the nanocomposite particle
    • …
    corecore